Java 内存管理机制与内存泄露

jopen 9年前

一、Java内存管理机制

C++语言中,如果需要动态分配一块内存,程序员需要负责这块内存的整个生命周期。从申请分配、到使用、再到最后的释放。这样的过程非常灵活,但是却十分繁琐,程序员很容易由于疏忽而忘记释放内存,从而导致内存的泄露。Java语言对内存管理做了自己的优化,这就是垃圾回收机制。Java的几乎所有内存对象都是在堆内存上分配(基本数据类型除外),然后由GCgarbage collection)负责自动回收不再使用的内存。

    上面是Java内存管理机制的基本情况。但是如果仅仅理解到这里,我们在实际的项目开发中仍然会遇到内存泄漏的问题。也许有人表示怀疑,既然Java的垃圾回收机制能够自动的回收内存,怎么还会出现内存泄漏的情况呢?这个问题,我们需要知道GC在什么时候回收内存对象,什么样的内存对象会被GC认为是“不再使用”的。

    Java中对内存对象的访问,使用的是引用的方式。在Java代码中我们维护一个内存对象的引用变量,通过这个引用变量的值,我们可以访问到对应的内存地址中的内存对象空间。在Java程序中,这个引用变量本身既可以存放堆内存中,又可以放在代码栈的内存中(与基本数据类型相同)。GC线程会从代码栈中的引用变量开始跟踪,从而判定哪些内存是正在使用的。如果GC线程通过这种方式,无法跟踪到某一块堆内存,那么GC就认为这块内存将不再使用了(因为代码中已经无法访问这块内存了)。

Java 内存管理机制与内存泄露

 

    通过这种有向图的内存管理方式,当一个内存对象失去了所有的引用之后,GC就可以将其回收。反过来说,如果这个对象还存在引用,那么它将不会被GC回收,哪怕是Java虚拟机抛出OutOfMemoryError

二、Java内存泄露

    一般来说内存泄漏有两种情况。一种情况如在C/C++语言中的,在堆中的分配的内存,在没有将其释放掉的时候,就将所有能访问这块内存的方式都删掉(如指针重新赋值);另一种情况则是在内存对象明明已经不需要的时候,还仍然保留着这块内存和它的访问方式(引用)。第一种情况,在Java中已经由于垃圾回收机制的引入,得到了很好的解决。所以,Java中的内存泄漏,主要指的是第二种情况。

    可能光说概念太抽象了,大家可以看一下这样的例子:

Vector v = new Vector(10);    for (int i = 1; i < 100; i++) {     Object o = new Object();     v.add(o);     o = null;    }

在这个例子中,代码栈中存在Vector对象的引用vObject对象的引用o。在For循环中,我们不断的生成新的对象,然后将其添加到Vector对象中,之后将o引用置空。问题是当o引用被置空后,如果发生GC,我们创建的Object对象是否能够被GC回收呢?答案是否定的。因为,GC在跟踪代码栈中的引用时,会发现v引用,而继续往下跟踪,就会发现v引用指向的内存空间中又存在指向Object对象的引用。也就是说尽管o引用已经被置空,但是Object对象仍然存在其他的引用,是可以被访问到的,所以GC无法将其释放掉。如果在此循环之后,Object对象对程序已经没有任何作用,那么我们就认为此Java程序发生了内存泄漏。

    尽管对于C/C++中的内存泄露情况来说,Java内存泄露导致的破坏性小,除了少数情况会出现程序崩溃的情况外,大多数情况下程序仍然能正常运行。但是,在移动设备对于内存和CPU都有较严格的限制的情况下,Java的内存溢出会导致程序效率低下、占用大量不需要的内存等问题。这将导致整个机器性能变差,严重的也会引起抛出OutOfMemoryError,导致程序崩溃。


三、内存泄漏的基本原理

        在C++语言程序中,使用new操作符创建的对象,在使用完毕后应该通过delete操作符显示地释放,否则,这些对象将占用堆空间,永远没有办法得到回收,从而引起内存空间的泄漏。如下的简单代码就可以引起内存的泄漏:

void function(){      Int[] vec = new int[5];  }


        在function()方法执行完毕后,vec数组已经是不可达对象,在C++语言中,这样的对象永远也得不到释放,称这种现象为内存泄漏。

        而Java是通过垃圾收集器(Garbage Collection,GC)自动管理内存的回收,程序员不需要通过调用函数来释放内存,但它只能回收无用并且不再被其它对象引用的那些对象所占用的空间。在下面的代码中,循环申请Object对象,并将所申请的对象放入一个Vector中,如果仅仅释放对象本身,但是因为Vector仍然引用该对象,所以这个对象对GC来说是不可回收的。因此,如果对象加入到Vector后,还必须从Vector中删除,最简单的方法就是将Vector对象设置为null。

Vector v = new Vector(10);  for (int i = 1; i < 100; i++)  {      Object o = new Object();      v.add(o);      o = null;  }//此时,所有的Object对象都没有被释放,因为变量v引用这些对象。


        实际上无用,而还被引用的对象,GC就无能为力了(事实上GC认为它还有用),这一点是导致内存泄漏最重要的原因。

        Java的内存回收机制可以形象地理解为在堆空间中引入了重力场,已经加载的类的静态变量和处于活动线程的堆栈空间的变量是这个空间的牵引对象。这里牵引对象是指按照Java语言规范,即便没有其它对象保持对它的引用也不能够被回收的对象,即Java内存空间中的本原对象。当然类可能被去加载,活动线程的堆栈也是不断变化的,牵引对象的集合也是不断变化的。对于堆空间中的任何一个对象,如果存在一条或者多条从某个或者某几个牵引对象到该对象的引用链,则就是可达对象,可以形象地理解为从牵引对象伸出的引用链将其拉住,避免掉到回收池中;而其它的不可达对象由于不存在牵引对象的拉力,在重力的作用下将掉入回收池。在图1中,A、B、C、D、E、F六个对象都被牵引对象所直接或者间接地“牵引”,使得它们避免在重力的作用下掉入回收池。如果TR1-A链和TR2-D链断开,则A、B、C三个对象由于失去牵引,在重力的作用下掉入回收池(被回收),D对象也是同样的原因掉入回收池,而F对象仍然存在一个牵引链(TR3-E-F),所以不会被回收,如图2、3所示。

         Java 内存管理机制与内存泄露
        图1 初始状态

         Java 内存管理机制与内存泄露
        图2 TR1-A链和TR2-D链断开,A、B、C、D掉入回收池

         Java 内存管理机制与内存泄露
        图3 A、B、C、D四个对象被回收

        通过前面的介绍可以看到,由于采用了垃圾回收机制,任何不可达对象都可以由垃圾收集线程回收。因此通常说的Java内存泄漏其实是指无意识的、非故意的对象引用,或者无意识的对象保持。无意识的对象引用是指代码的开发人员本来已经对对象使用完毕,却因为编码的错误而意外地保存了对该对象的引用(这个引用的存在并不是编码人员的主观意愿),从而使得该对象一直无法被垃圾回收器回收掉,这种本来以为可以释放掉的却最终未能被释放的空间可以认为是被“泄漏了”。

        这里通过一个例子来演示Java的内存泄漏。假设有一个日志类Logger,其提供一个静态的log(String msg)方法,任何其它类都可以调用Logger.Log(message)来将message的内容记录到系统的日志文件中。Logger类有一个类型为HashMap的静态变量temp,每次在执行log(message)方法的时候,都首先将message的值丢入temp中(以当前线程+当前时间为键),在方法退出之前再从temp中将以当前线程和当前时间为键的条目删除。注意,这里当前时间是不断变化的,所以log方法在退出之前执行删除条目的操作并不能删除方法执行之初丢入的条目。这样,任何一个作为参数传给log方法的字符串最终由于被Logger的静态变量temp引用,而无法得到回收,这种违背实现者主观意图的无意识的对象保持就是我们所说的Java内存泄漏。


3.1 一般情况下内存泄漏的避免

    在不涉及复杂数据结构的一般情况下,Java的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度。我们有时也将其称为“对象游离”。

例如:

public class FileSearch {     private byte[] content;   private File mFile;     public FileSearch(File file) {    mFile = file;   }     public boolean hasString(String str) {    int size = getFileSize(mFile);    content = new byte[size];    loadFile(mFile, content);    String s = new String(content);    return s.contains(str);   }    }


在这段代码中,FileSearch类中有一个函数hasString,用来判断文档中是否含有指定的字符串。流程是先将mFile加载到内存中,然后进行判断。但是,这里的问题是,将content声明为了实例变量,而不是本地变量。于是,在此函数返回之后,内存中仍然存在整个文件的数据。而很明显,这些数据我们后续是不再需要的,这就造成了内存的无故浪费。

    要避免这种情况下的内存泄露,要求我们以C/C++的内存管理思维来管理自己分配的内存。第一,是在声明对象引用之前,明确内存对象的有效作用域。在一个函数内有效的内存对象,应该声明为local变量,与类实例生命周期相同的要声明为实例变量……以此类推。第二,在内存对象不再需要时,记得手动将其引用置空。

3.2 复杂数据结构中的内存泄露问题

    在实际的项目中,我们经常用到一些较为复杂的数据结构用于缓存程序运行过程中需要的数据信息。有时,由于数据结构过于复杂,或者我们存在一些特殊的需求(例如,在内存允许的情况下,尽可能多的缓存信息来提高程序的运行速度等情况),我们很难对数据结构中数据的生命周期作出明确的界定。这个时候,我们可以使用Java中一种特殊的机制来达到防止内存泄露的目的。

    之前我们介绍过,JavaGC机制是建立在跟踪内存的引用机制上的。而在此之前,我们所使用的引用都只是定义一个“Object o;”这样形式的。事实上,这只是Java引用机制中的一种默认情况,除此之外,还有其他的一些引用方式。通过使用这些特殊的引用机制,配合GC机制,就可以达到一些我们需要的效果。

Java中的几种引用方式

    Java中有几种不同的引用方式,它们分别是:强引用、软引用、弱引用和虚引用。下面,我们首先详细地了解下这几种引用方式的意义。

    
      强引用

在此之前我们介绍的内容中所使用的引用都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空 间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

软引用(SoftReference

SoftReference 类的一个典型用途就是用于内存敏感的高速缓存。SoftReference 的原理是:在保持对对象的引用时保证在 JVM 报告内存不足情况之前将清除所有的软引用。关键之处在于,垃圾收集器在运行时可能会(也可能不会)释放软可及对象。对象是否被释放取决于垃圾收集器的算法 以及垃圾收集器运行时可用的内存数量。

弱引用(WeakReference

WeakReference 类的一个典型用途就是规范化映射(canonicalized mapping)。另外,对于那些生存期相对较长而且重新创建的开销也不高的对象来说,弱引用也比较有用。关键之处在于,垃圾收集器运行时如果碰到了弱可及对象,将释放 WeakReference 引用的对象。然而,请注意,垃圾收集器可能要运行多次才能找到并释放弱可及对象。

虚引用(PhantomReference

PhantomReference 类只能用于跟踪对被引用对象即将进行的收集。同样,它还能用于执行 pre-mortem 清除操作。PhantomReference 必须与 ReferenceQueue 类一起使用。需要 ReferenceQueue 是因为它能够充当通知机制。当垃圾收集器确定了某个对象是虚可及对象时,PhantomReference 对象就被放在它的 ReferenceQueue 上。将 PhantomReference 对象放在 ReferenceQueue 上也就是一个通知,表明 PhantomReference 对象引用的对象已经结束,可供收集了。这使您能够刚好在对象占用的内存被回收之前采取行动。ReferenceReferenceQueue的配合使用。

GCReferenceReferenceQueue的交互

A、 GC无法删除存在强引用的对象的内存。

B、 GC发现一个只有软引用的对象内存,那么:

① SoftReference对象的referent 域被设置为null,从而使该对象不再引用heap对象。

② SoftReference引用过的heap对象被声明为finalizable

③ 当 heap 对象的 finalize() 方法被运行而且该对象占用的内存被释放,SoftReference 对象就被添加到它的 ReferenceQueue(如果后者存在的话)。

C、 GC发现一个只有弱引用的对象内存,那么:

① WeakReference对象的referent域被设置为null,从而使该对象不再引用heap对象。

② WeakReference引用过的heap对象被声明为finalizable

③ heap对象的finalize()方法被运行而且该对象占用的内存被释放时,WeakReference对象就被添加到它的ReferenceQueue(如果后者存在的话)。

D、 GC发现一个只有虚引用的对象内存,那么:

① PhantomReference引用过的heap对象被声明为finalizable

② PhantomReference在堆对象被释放之前就被添加到它的ReferenceQueue

四、注意事项

1GC在一般情况下不会发现软引用的内存对象,只有在内存明显不足的时候才会发现并释放软引用对象的内存。

2GC对弱引用的发现和释放也不是立即的,有时需要重复几次GC,才会发现并释放弱引用的内存对象。
3、软引用和弱引用在添加到ReferenceQueue的时候,其指向真实内存的引用已经被置为空了,相关的内存也已经被释放掉了。而虚引用在添加到ReferenceQueue的时候,内存还没有释放,仍然可以对其进行访问