OpenGL的特点及功能

openkk 12年前

OpenGL是一个开放的三维图形软件包,它独立于窗口系统和操作系统,以它为基础开发的应用程序可以十分方便地在各种平台间移植;OpenGL可以与 Visual C++紧密接口,便于实现机械手的有关计算和图形算法,可保证算法的正确性和可靠性;OpenGL使用简便,效率高。它具有七大功能:   
    1.建模:OpenGL图形库除了提供基本的点、线、多边形的绘制函数外,还提供了复杂的三维物体(球、锥、多面体、茶壶等)以及复杂曲线和曲面绘制函数。   
    2.变换:OpenGL图形库的变换包括基本变换和投影变换。基本变换有平移、旋转、变比镜像四种变换,投影变换有平行投影(又称正射投影)和透视投 影两种变换。其变换方法有利于减少算法的运行时间,提高三维图形的显示速度。   
    3.颜色模式设置:OpenGL颜色模式有两种,即RGBA模式和颜色索引(Color Index)。   
    4.光照和材质设置:OpenGL光有辐射光(Emitted Light)、环境光(Ambient Light)、漫反射光(Diffuse Light)和镜面光(Specular Light)。材质是用光反射率来表示。场景(Scene)中物体最终反映到人眼的颜色是光的红绿蓝分量与材质红绿蓝分量的反射率相乘后形成的颜色。   
    5:纹理映射(Texture Mapping)。利用OpenGL纹理映射功能可以十分逼真地表达物体表面细节。   
    6:位图显示和图象增强图象功能除了基本的拷贝和像素读写外,还提供融合(Blending)、反走样(Antialiasing)和雾(fog)的特殊图象效果处理。以上三条可使被仿真物更具真实感,增强图形显示的效果。
  7:双缓存动画(Double Buffering)双缓存即前台缓存和后台缓存,简言之,后台缓存计算场景、生成画面,前台缓存显示后台缓存已画好的画面。
   此外,利用OpenGL还能实现深度暗示(Depth Cue)、运动模糊(Motion Blur)等特殊效果。从而实现了消隐算法。OpenGL设备运用,目前瑞芯微2918芯片和英伟达芯片Tegra2 就是采用OpenGL 2.0技术进行图形处理,而基于瑞芯微2918芯片方案代表是台电T760和微蜂X7平板电脑所采用到。

现状

  Open GL仍然是唯一能够取代微软对3D图形技术的完全控制的API。它仍然具有一定的生命力,但是Silicon Graphics已经不再以任何让微软不悦的方式推广Open GL,因而它存在较高的风险。游戏开发人员是一个有着独立思想的群体,很多重要的开发人员目前仍然在使用Open GL。因此,硬件开发商正在设法加强对它的支持。Direct3D目前还不能支持高端的图形设备和专业应用; Open GL在这些领域占据着统治地位。最后,开放源码社区(尤其是Mesa项目)一直致力于为任何类型的计算机(无论它们是否使用微软的操作系统)提供Open GL支持。
   截止2012年5月已经公布了OpenGL4.2。
   08年8月正式公布OpenGL3.0版本。并且得到了nv的支持,其项目主页上提供针对N卡的sdk下载。
   目前,国内的三维游戏开发技术正处于赶超国外的关键时期,从创意、策划、研究开发与实现,到游戏的运营与维护,都有大量的知识值得学习和摸索。由于 Linux 操作系统平台的大力推广,基于Linux 的各种应用软件也不断壮大,因此基于跨平台图形库的跨平台三维游戏开发也越来越受重视。OpenGL(open graphics library)是一种独立的平台无关的三维图形开发库,在各种语言下进行主框架开发并结合应用OpenGL 函数都可以开发出三维游戏。但是由于框架开发的平台相关性使游戏无法跨平台编译运行,因此glut+OpenGL 的方式成了一种很好的选择。但是在对复杂框架和各种媒体的支持方面,glut 并不理想。在Linux 下可以采用FLTK 等框架平台技术实现包括按钮在内的比较复杂的框架功能,但是需要专门的Linux 开发环境,众多的Window 环境下的KDE 爱好者明显对此无法适从。相反,SDL(Simple DirectMedia Layer)作为免费的跨平台多媒体应用编程接口,已经被人们广泛用于开发二维游戏,其优秀的消息框架支持、文件支持和声音支持等都使得它成为能与微软 DirectX 匹敌的最为成熟的技术之一。

编辑本段扩展

  当独立厂商创建一种新技术时,OpenGL标准允许它们通过“扩展”的方法提供所扩展的功能。然后一个扩展就分成两部分发布:包含扩展函数原型的头文件和作为厂商的设备驱动。每个厂商有一个用于命名它们的新函数和常量的字母缩写。例如,NVIDIA的缩写(“NV”)用于定义它们的专有函数 “glCombinerPara-   meterfvNV()”和它们的常量“GL_NORMAL_MAP_NV”。如果多于一个厂商同意实现相同的扩展功能,那么就用缩写“EXT”。进一步,架构评审委员会可能“祝福”这个扩展,那么这就被称为一个“标准扩展”,使用缩写“ARB”。第一个ARB扩展是 GL_ARB_multitexture。根据官方扩展提升路径,多纹理不再是可选实现的ARB扩展,它已经是OpenGL 1.4以后的核心API的一部分。   几个库创建在OpenGL之上,提供了OpenGL本身没有的功能:   1)GLU   2)GLUT   3)GLUI   4)GLEW   5)GLEE   特别是,OpenGL Performer库——由SGI开发并可以在IRIX、Linux和Microsoft Windows的一些版本上使用,构建于OpenGL,可以创建实时可视化仿真程序。   当开发者需要使用最新的OpenGL扩展时,他们往往需要使用GLEW或者是GLEE库提供的功能,可以在程序的运行期判断当前硬件是否支持相关的扩展,防止程序崩溃甚至造成硬件损坏。

绑定

  为了加强它的多语言和多平台特性,已经用很多语言开发了OpenGL的各种绑定和移植。最值得注意的是,Java3D库已经可以利用OpenGL(另一个选择可能是DirectX)作为它的硬件加速了。OpenGL官方网页[1]列出了用于Java、Fortran90、Perl、Pike、Python、Ada和Visual Basic的多个绑定。

OpenGL 3.1规范

  Khronos Group在2009年3月又公布了升级版新规范OpenGL 3.1,也是这套跨平台免费API有史以来的第九次更新。   OpenGL 3.1将此前引入的OpenGL着色语言“GLSL”从1.30版升级到了1.40版,通过改进程序增强了对最新可编程图形硬件的访问,还有更高效的顶点处理、扩展的纹理功能、更弹性的缓冲管理等等。宽泛地讲,OpenGL 3.1在3.0版的基础上对整个API模型体系进行了简化,可大幅提高软件开发效率。
   OpenGL 3.1主要新特性:Texture Buffer Objects(纹理缓冲对象)、Uniform Buffer Objects(统一缓冲对象)、Signed Normalized Textures(符号正常化纹理)、Primitive Restart(基本元素重启)、Instancing(实例化)、CopyBuffer API(拷贝缓冲接口)……
   与OpenGL 3.1规范同步,OpenGL架构评审委员会(ARB)也发布了一个兼容性扩展,能让开发人员在访问OpenGL 3.1里已经删除的OpenGL 1.x/2.x功能,确保应用程序的全面向下兼容性。
   OpenGL 3.1公布后,业界图形厂商很快予以了大力支持。AMD OpenGL主管Suki Samra表示:“AMD全面用户OpenGL API,会在今后的Radeon和FirePro产品驱动程序中支持OpenGL 3.1。”NVIDIA市场营销副总裁Dan Vivoli表示:“NVIDIA承诺尽快部署OpenGL 3.1,我们也很自豪地在规范公布同一天放出了自己的测试版驱动程序。”
   市场调研机构Jon Peddie Research预测,OpenGL 3.1规范图形硬件的安装规模将超过1亿。AMD、NVIDIA、S3 Graphics的显卡驱动目前都已经支持OpenGL 3.0。

高级功能

  OpenGL被设计为只有输出的,所以它只提供渲染功能。核心API没有窗口系统、音频、打印、键盘/鼠标或其它输入设备的概念。虽然这一开始看起来像是一种限制,但它允许进行渲染的代码完全独立于他运行的操作系统,允许跨平台开发。然而,有些整合于原生窗口系统的东西需要允许和宿主系统交互。这通过下列附加API实现:
    GLX - X11(包括透明的网络)
   
WGL - Microsoft Windows
   * AGL - Apple MacOS
   另外,GLUT库能够以可移植的方式提供基本的窗口功能。